

8-Channel Analog Signal to RS485/232 Converter

(A/D Converter, WJ28 series)

Features:

- >> 8-CH analog signal acquisition, isolated RS-485/232 output
- >> 24-bit AD converter, testing accuracy>0.05%
- >> Can Program and calibrate modules accuracy via RS-485/232 interface
- >> Input/output: 3000VDC
- >> Wide power supply: 8~32VDC
- >> High reliability, easy programming, easy installation.
- >> Can program setting module address, baud rate
- >> 0-5V voltage signal or 4-20mA current signal input
- >> Supports Modbus RTU protocol
- >> DIN35 Rail-mounted

Typical Application:

- >> Signal measurement/monitoring/control
- >> RS-485 remote I / O, data acquisition
- >> RS-232/485 bus industrial automation control system
- >> Industrial field signal data acquisition and recording
- >> Industrial field signal isolation and long-term transmission
- >> Medical, industrial product development
- >> 4-20mA or 0-5V signal acquisition

Product Overview:

WJ28 series products realize the signal acquisition between sensor and host, to measure analog signals. WJ28 products can be applied to RS-232/485 bus industrial automation control system,4-20mA / 0-5V signal measurement, monitoring and control,0-75mV ,0-100mV and other small-signal measurement and signal isolation and long-term industrial transmission and so on.

Products include power supply isolation, signal isolation, linearization, A/D conversion and RS-485 serial communication. Each serial interface can connect up to 255 pieces WJ28 Series modules, communication using ASCII code or MODBUS RTU communication protocol, and its instruction set compatible with the ADAM modules, baud rate can been set by the code, with other manufacturers control module hang in the same RS-485 bus for easy programming.

Figure 2 WJ28 Block Diagram

Figure 1 WJ28

WAYJUN TECHNOLOGY

Signal Isolators & Conditioners

WJ28 series products are based on SCM's intelligent monitoring and control system, users set the calibration value, address, baud rate, data format, checksum status, and configuration information are all stored in nonvolatile memory EEPROM.

WJ28 products are according to industry standard design, isolation between signal input / output, can withstand voltage 3000VDC, high anti-interference ability and reliability. Operating temperature range is - $45 \sim +85$ °C.

Function Description:

WJ28 signal isolation acquisition module can be used to measure eight channels voltage or current signal,

1. Analog signal input

24-Bit acquisition accuracy, eight channels analog input. All products signal input range have been calibrated. In use, users also can program calibration easily.

About the specific current or voltage input range, please see product selection.

2. Communication protocol

Communication Interface: one channel standard RS-485 communication interface, or one standard RS-232 communication interface, specify when ordering.

Communication Protocols: supports two protocols, characters protocol of the command set defined and MODBUS RTU communication protocol. Can be programmed using the kind of communication protocol, can be achieved with PLC, RTU of many Brands or computer monitoring system for network communication.

Data Format: 10 Bits. 1 start bit,8 data bits,1 stop bit.

Address: (0 to 255) and baud rate (1200,2400,4800,9600,19200,38400 bps) can be set, the most long-distance about communication networks is up to 1200 meters, through the twisted-pair shielded cable.

Communication interface of high anti-jamming design, ± 15 KV ESD protection, communication response time is less than 100mS.

3. Anti-jamming

According to need to set the checksum. Module internal has transient suppression diodes, can inhibit a variety of surge pulse, protection module, and internal digital filter can also be well suppressed from the grid frequency interference.

	11/100		-			
	WJ28	U(A) [
Inp	ut Voltage or Cu	ırrent Signal —			— Interfa	ce
U1:	0-5V	A1: 0-1mA			485:	output is RS-485 interface
U2:	0-10V	A2: 0-10mA	1		232:	output is RS-232 interface
U3:	0-75mV	A3: 0-20m	4			
U4:	0-2.5V	A4: 4-20m	4			
U5:	0-±5V	A5: 0-±1m/	4			
U6:	0-±10V	A6: 0-±10m	A			
U7:	0-±100mV	A7: 0-±20m	A			
U8:	user-defined	A8: user-de	ined			
Sample 1	l: part No.:'	WJ28 A4-485	8-CH 4-	-20mA in	put signal,	output is RS485 interface
Sample 2	2: part No.:'	WJ28 U1-232	8-CH 0-	-5V inpu	t signal, o	utput is RS232 interface
Sample 3	3: part No.:'	WJ28 U2-232	8-CH 0-	-10V inp	ut signal,	output is RS232 interface
Also you	an choose 1~	7 channel.				
General	parameters:					
(typical	@+25 °C, Vs	to 24VDC)				
Input ty	pe: current / vo	ltage input				
Accura	cy: 0.05%					
Temper	ature drift: \pm 3	0 ppm / ℃ (±	50 ppm	/°C, ma	ximum)	

Input Resistance: $50\Omega (4-20mA/0-20mA/0- \pm 20mA \text{ current input})$
$100\Omega (0-10 \text{mA/O}-\pm 10 \text{mA current input})$
$1K\Omega (0-1mA/0-\pm 1mA \text{ current input})$
>200K(5V/10V voltage input)
$>1M\Omega$ (below 2.5V voltage input)
Bandwidth: -3 dB 10 Hz
Conversion rate: 10 Sps
Common Mode Rejection (CMR): 120 dB (1kΩ Source Imbalance @ 50/60 Hz)
Normal Mode Rejection (NMR): 60 dB (1kΩ Source Imbalance @ 50/60 Hz)
Input Protection: over-voltage protection, over-current protection
Communication: RS-485 protocol or RS-232 standard characters protocols and MODBUS RTU communication protocol
Baud Rate (2400,4800,9600,19200,38400 bps) can be selected via software
Address (0 to 255) can be selected via software
Communication Response Time: 100 ms maximum
Power Supply: +8 ~ 32VDC wide range power supply, internal anti-reverse and over-voltage protection circuit
Power Loss: less than 1W
Operating Temperature: - $45 \sim +80$ °C
Humidity: $10 \sim 90\%$ (no condensation)
Storage Temperature: - $45 \sim +80$ °C
Storage Humidity: 10 ~ 95% (no condensation)
Isolation Voltage: input / output: 3KVDC, 1 minute, leakage current:1mA
Which output signal and power supply are common ground.
Shock Voltage: 3KVAC, 1.2/50us (peak)

Dimensions: 120 mm x 70 mm x 43mm

Footprint Function:

PIN	Name	Function	PIN	Name	Function
1	IN5+	Channel 5 input +	11	INO-	Channel 0 input -
2	IN5-	Channel 5 input -	12	INO+	Channel 0 input +
3	IN6+	Channel 6 input +	13	IN1-	Channel 1 input -
4	IN6-	Channel 6 input -	14	IN1+	Channel 1 input +
5	IN7+	Channel 7 input +	15	IN2-	Channel 2 input -
6	IN7-	Channel 7 input -	16	IN2+	Channel 2 input +
7	DATA+	RS-485 signal+	17	IN3-	Channel 3 input -
8	DATA-	RS-485 signal-	18	IN3+	Channel 3 input +
9	PW+	Power Supply+	19	IN4-	Channel 4 input -
10	GND	Power supply -, Output ground	20	IN4+	Channel 4 input +

Figure 3 WJ28 Wiring Diagram

Initialization WJ28 modules:

All WJ28 modules, if you use RS-485 network, must be assigned a unique address code, address code value of hexadecimal numbers between 00 and FF. However, all new WJ28 module uses a factory initial settings, as follows:

Address code: 01

Baud rate: 9600 bps

Checksum is disable

As the new module address codes are the same, their address will be contradictory to other modules, so when you set up the system, you must reconfigure each WJ28 module address. WJ28 module can be connected the power cord and RS485 communication lines, through configuration commands to modify the WJ28 module address. Baud rate, parity and status, communication protocols also need to be adjusted according to user requirements. In the modified baud rate, parity and status, communication protocol, you must first enter the module to the default state, or can not be modified.

Let the module into the default state:

WJ28 module has a special INIT pin. Connecting the INIT PIN to ground (GND PIN), then open power, the module into the default state. In this state, the module is configured as follows:

Address code 00

9600 bps baud rate

Checksum is disable

At this time, via configuration commands you can modify the WJ28 module baud rate, parity, checksum state and other parameters, by setting the module communication protocol command to select the communication protocol. When are not sure a module specific configuration, can also be configured by installing the jumper, so that the module into the default state, then reconfigure the module. If clients need set the module to MODBUS RTU communication protocol, see the MODBUS protocol section for instructions.

WJ28 character protocol command set:

Order is by a series of characters, such as first code, address ID, variables, an optional checksum byte and a terminator (**cr**) which can show command. In addition to wildcard address "**"synchronization command, the host only commands a WJ28 module once.

Command format: (Leading Code) (Addr) (Command) [data] [checksum] (cr)

(Leading code) prefix is the first letter of the command. All commands require a command prefix, such as %,\$,#,@,... etc. 1 - Character

WAYJUN TECHNOLOGY

Signal Isolators & Conditioners

(Addr) module address code, i	f not specified below, range is from $00 \sim FF$ (hexade	cimal). 2 - Character
(Command) shows the comman	d code or variable values.	Variable length
[Data] some output comman	nd needs data	Variable length
[Checksum] brackets Checksur	n (checksum) shows an optional parameter, only	the checksum is enabled, need this
option.		2 - Character
(Cr) a control code character as	identify, (cr) as a carriage return character, its value	is 0x0D. 1 - Character

When enabled checksum (checksum), users need [Checksum]. It accounted for 2 - character. Commands and responses must be attached checksum feature. Checksum used to check all input commands to help you find the host to the module command module to the host response to errors and mistakes. Checksum characters placed in command or in response to the character after the carriage return before.

Calculated as follows: two characters, the hexadecimal number for all issued prior to the ASCII values of and, then with hexadecimal digits 0xFF phase proceeds.

Note: Normally, INIT switch to the NORMAL position.

Examples: Disable checksum (checksum)

command: **\$002(cr)** response: !00020600 (cr) Enable checksum command: \$002B6 (cr) response: **!00020600 A9 (cr)** $^{\prime}$ \$' = 0x24 0' = 0x30'2' = 0x32B6=(0x24+0x30+0x30+0x32) AND 0xFF '!' = 0x210' = 0x302' = 0x326' = 0x36A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

Command response:

Response message depends on a variety of commands. Response also is consists of several characters, includes leading code, variables and end tags. The first code of response signal has two:'!' Or '>' indicates that a valid command and '?' means invalid. By checking the response information, you can monitor whether the command is valid **Note:**

- 1. In some cases, many commands use the same command format. To ensure that you use a command in the address is correct, if you use the wrong address and this address represents another module, then the command will take effect in another module, resulting in an error.
- 2. the command must be entered in uppercase letters.

1 Read Measurement Data Command

Description: Returns all channels analog input measurement data from the module in the currently configured data format

Command Format: #AA(cr)

Parameters: # delimiter character. Hexadecimal 23H

AA module address, range is 00-FF(hexadecimal). Factory address is 01, converted to hexadecimal ASCII code for each character. Such as address 01 into hexadecimal are 30H and 31H.

(cr) is the terminating character, carriage return (0Dh)

Response : >(data)(cr) command is valid.

?AA(cr) invalid command or illegal operation.

Parameter: > delimiter character

(data) Returns data. The data format is in Engineering Units, Percent of FSR, Two's complement hexadecimal, Hexadecimal is each character ASCII code. Refer to Chapter 2 Command Set.

(cr) terminating character, carriage return (0Dh)

There is no response if the module is format error or communication error or address does not exist, the module does not respond. If you are using serial communication software, but can not enter the return key characters, please switch to hexadecimal format for communicate

Example: Commands (character format) **#01(cr)**

WAYJUN

(Hexadecimal format) 2330310D

Signal Isolators & Conditioners

At the address 01H module, input is (Data format is engineering units):

Channel 0: +12.000mA Channel 1: +16.000mA Channel 2: +16.000mA Channel 2: +16.000mA

Channel 4: +16.000mA Channel 5: +16.000mA Channel 6: +16.000mA Channel 7: +18.168mA

2, Read Channel N Analog Module Data Command

Description: Read back channel N analog input data from the module, as the current data formats Command Format: **#AAN(cr)**

Parameters: # delimiter character.

AA module address, range is 00-FF(hexadecimal). Factory address is 01, converted to hexadecimal ASCII code for each character. Such as address 01 into hexadecimal are 30H and 31H.

N channel code 0~7, if hexadecimal: 30H~ 37H

(cr) is the terminating character, carriage return (0Dh)

Response : >(data)(cr) command is valid.

?AA(cr) invalid command or illegal operation.

Parameters: > delimiter character

(data) Returns data. The data format is in Engineering Units, Percent of FSR, Two's complement hexadecimal or ohms.Refer to Chapter 3 Command Set.

(cr) terminating character, carriage return (0Dh)

There is no response if the module is format error or communication error or address does not exist.

Example: Commands (character format) **#010(cr)**

(Hexadecimal format) 233031300D

Module response (character format) >+18.000 (cr)

(Hexadecimal format) **3E2B31382E3030300D**

At address 01H module, channel 0 input signal is +18.000mA(Data format is engineering units)

2、Set WJ28 Module Command

Description: Set address, input ranges, baud rate, data formats, checksum and state for a analog input module, counter data are stored in a EEPROM.

Command Format: %AANNTTCCFF(cr)

Parameter : % delimiter character

AA module address, (range 00-FF) represents the 2-character hexadecimal. Factory address is 01, converted to hexadecimal ASCII code for each character. Such as address 01 into hexadecimal are 30H and 31H.

NN indicates new module hexadecimal address, value NN range is 00~FF. converted to hexadecimal ASCII code for each character. Such as address 18 into hexadecimal are 31H and 38H.

TT hexadecimal indicates type code.WJ28 must been set 00

CC Baud Rate code (hexadecimal)

Signal Isolators & Conditioners

Baud rate code	Baud rate
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud

Table 2Baud rate code

FF Hexadecimal 8-bit represents the data format, checksum. Note from bits2 to bits5 need not been set to zero.

	Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit O
--	------	-------	-------	-------	-------	------	-------	-------

Table 3 Data format, checksum and code

Bit7: Reserved bits (must set to 0)

Bit6: checksum states, if 0:Disabled, if 1: Enabled

Bit5-bit2: Not use(must been set to 0)

Bit1-bit0: Data Format Bit

- 00: Engineering Units
- 01: % of FSR
- 10: Twos complement hexadecimal

(cr) terminating character, carriage return (0Dh)

Response: !AA(cr) command is valid

?AA(cr) command is invalid or illegal operation, or do not set up line before changing baud rate or checksum

Parameter Description:

- ! delimiter character which indicates a valid command.
- ? delimiter character which indicates a invalid command.
- AA represents input module address
- (cr) terminating character, carriage return (0Dh)

If you configure module for the first time, AA=00 and NN equal to new address. If reconfigure module changing address, input range, data formats, AA equals to present configured address, NN equals to the current or new address. If reconfigure module changing baud rate or checksum state, must install command string, make them in listening mode, module address is 00H, also AA=00H, NN=present or new address.

There is no response if the format error or communication error or address does not exist.

Example: command	%0111000600(cr)
------------------	-----------------

res	ponse	!11(cr)
Description: %	delimit	er character

00 indicates you want to configure the WJ28 module original address set to 01H.

- 11 indicates new module hexadecimal address is 11H
- 00 indicates type code, WJ28 must been set to 00
- 06 indicates baud rate: 9600 baud
- 00 indicates data format is Engineering Units, checksum is disabled

4、 Read Set Status Command

Description: Read configuration for a specified WJ28 module.

Command Format: \$AA2(cr)

Parameter: \$ delimiter character

AA module address, (range 00-FF) represents the 2-character hexadecimal

TECHNOLOGY

WAYJUN

- 2 indicates read set state command
- (cr) terminating character, carriage return (0Dh)

Response: !AATTCCFF(cr) command is valid

?AA(cr) command is invalid or illegal operation

- ! delimiter character
- AA represents input module address
- TT Type Code
- **CC** Baud rate code, Table 2
- **FF** Table 3
- (cr) terminating character, carriage return (0Dh)

There is no response if the format error or communication error or address does not exist.

Example: command \$302(cr)

response !300F0600(cr)

- ! delimiter character
- **30** indicates WJ28 module address is 30H
- 00 indicates input type code
- 06 represents that baud rate is 9600 baud
- 00 represents that data format is Engineering Units, disable checksum

5、 Offset Calibration Command

Description: Calibrates an analog input module channel N offset errors

Command Format: \$AAN(cr)

- Parameter: \$ delimiter character
 - AA module address, (range 00-FF) represents the 2-character hexadecimal
 - 1 represents offset calibration command
 - N channel code 0~7
 - (cr) terminating character, carriage return (0Dh)
- **Response: ! AA (cr)** command is valid
 - **?AA(cr)** command is invalid or Illegal operation
 - ! delimiter character which indicates a valid command.
 - ? delimiter character which indicates a invalid command.
 - AA represents input module address
 - (cr) terminating character, carriage return (0Dh)

Products have been calibrated, user can use them directly. After calibrating offset command, then calibrate gain errors. During calibration, WJ21 modules need to be connected to the input of the appropriate input signal. Different input range requires a different input voltage or current. (See following Calibration information)

There is no response if the format error or communication error or address does not exist.

Example: command **\$0110(cr)**

response !01 (cr)

Calibrate module channel 0 offset at address 01H.

6, Gain Calibration Command

Description: Calibrates an analog input module channel N gain errors

Command Format: \$AA0N(cr)

- Parameter: \$ delimiter character
 - AA module address, (range 00-FF) represents the 2-character hexadecimal
 - **0** represents gain calibration command
 - N channel code 0~7

(cr) terminating character, carriage return (0Dh)

Response: !AA(cr) command is valid

- ?AA(cr) command is invalid or illegal operation
- ! delimiter character which indicates a valid command.
- ? delimiter character which indicates a invalid command.
- **AA** represents input module address
- (cr) terminating character, carriage return (0Dh)

Products have been calibrated, user can use them directly. After calibrating offset command, then calibrate gain errors. During calibration, WJ21 module needs to be connected to the input of the appropriate input signal. Different input range requires a different input voltage or current. (See following Calibration information)

There is no response if the format error or communication error or address does not exist.

Example: command **\$0103(cr)**

Response !01 (cr)

Calibrate module channel 3 gain errors at address 01H.

7, Read Module Name Command

Description: Read module name from the specified WJ28 module

Command Format: \$AAM(cr)

- Parameter: \$ delimiter character
 - AA module address, (range 00-FF) represents the 2-character hexadecimal
 - M represents Read module name command
 - (cr) terminating character, carriage return (0Dh)

Response:!AA(Module Name)(cr) command is valid

?AA(cr) command is invalid or illegal operation

- ! delimiter character which indicates a valid command.
- ? delimiter character which indicates a invalid command.
- AA represents input module address

(Module Name) module name WJ28

(cr) terminating character, carriage return (0Dh)

There is no response if the format error or communication error or address does not exist.

Example: command **\$08M(cr)**

response !08WJ28 (cr)

Module name is WJ28 at address 08H

8, Enable or Disable Channel Command

Description: Send enable or disable module data acquisition channel command to a specified module.

Command Format: \$AA5VV(cr)

Parameter: \$ delimiter character

- AA module address, (range 00-FF) represents the 2-character hexadecimal
- 5 enable or disable module data acquisition channel command
- VV Two hex: one represents Channel 7 to 4 the second represents Channel 3 ~ 0
 0: Disable
 - 1: enable

Dit/	2.10	V	Bit I	Dity	1	V	2110
Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

(cr) terminating character, carriage return (0Dh)

Response: !AA(cr) command is valid

- **?AA(cr)** command is invalid or illegal operation
- ! delimiter character which indicates a valid command.

Signal Isolators & Conditioners

- ? delimiter character which indicates a invalid command.
- AA represents input module address
- (cr) terminating character, carriage return (0Dh)

There is no response if the format error or communication error or address does not exist.

Example: command \$08537(cr)

response **!08 (cr)**

Description: set channel value: 0x37

3 is 0011, means enable Channel 5 and 4, disable Channel 7 and 6.

7 is 0011, means enable Channel 2, 1 and 0, disable Channel 3.

9, Read Channel Status Command

Description: Read channel status command to a specified analog input module

Command Format: \$AA6(cr)

- Parameter: \$ delimiter character
 - AA module address, (range 00-FF) represents the 2-character hexadecimal
 - 6 read channel status command
 - (cr) terminating character, carriage return (0Dh)

Response: !AAVV(cr) command is valid

?AA(cr) command is invalid or illegal operation

- ! delimiter character which indicates a valid command.
- ? delimiter character which indicates a invalid command.
- AA represents input module address
- **VV** Two hex: one 3~0 represents Channel 7 to 4

the second $3 \sim 0$ represents Channel $3 \sim 0$

- 0: Disable
- 1: enable
- (cr) terminating character, carriage return (0Dh)

There is no response if the format error or communication error or address does not exist.

Example: command \$186 (cr)

response ! 18FF (cr)

Description: The current Channel status value is 0xFF.

0xFF is 1111 and 1111, means all channels are enabled at address 18H.

10, Set Communication Protocol Command

Description: Set the module communication protocol to characters protocol or Modbus RTU protocol.

Command Format: \$AAPV(cr)

- Parameter: \$ delimiter character
 - AA module address, (range 00-FF) represents the 2-character hexadecimal
 - **P** set communication protocol command
 - V protocol code, 0 or 1
 - **0:** characters protocol
 - 1: Modbus RTU protocol
 - (cr) terminating character, carriage return (0Dh)

Response: !AA(cr) command is valid

?AA(cr) command is invalid or illegal operation

- ! delimiter character which indicates a valid command.
- ? delimiter character which indicates a invalid command.
- AA represents input module address

(cr) terminating character, carriage return (0Dh)

There is no response if the format error or communication error or address does not exist.

Set command protocol must be effective by default.

Example 1: command \$00P1(cr)

response !00 (cr)

Set protocol command to Modbus RTU protocol

Example 2: command **\$00P0(cr)**

response !00 (cr)

Set protocol command to characters protocol

Input Ranges& Data Formats

WJ28 uses three data formats: 00: Engineering Units

01: % of FSR

10: Twos complement hexadecimal

Input Range	Data Format	+ F.S.	ZERO	-F.S	Displayed Resolution
	Engineering Units	+1.0000	±0.0000	-1.0000	0.1uA
A1: 0-1mA	% of FSR	+100.00	±000.00	-100.00	0.01%
A5: 0-±1mA	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
A.2 0 10 A	Engineering Units	+10.000	±00.000	-10.000	1uA
A2: $0-10$ mA	% of FSR	+100.00	±000.00	-100.00	0.01%
A0: 0-±10mA	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
A3: 0-20mA	Engineering Units	+20.000	±00.000	-20.000	1uA
A4: 4-20mA	% of FSR	+100.00	±000.00	-100.00	0.01%
A7: 0-±20mA	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
	Engineering Units	+5.0000	±0.0000	-5.0000	100uV
U1: 0.5V	% of FSR	+100.00	±000.00	-100.00	0.01%
$05: 0-\pm 5V$	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
	Engineering Units	+10.000	±00.000	-10.000	1mV
$U_2: 0.10V$	% of FSR	+100.00	±000.00	-100.00	0.01%
00: 0-±107	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
	Engineering Units	+75.000	±00.000	-75.000	1uV
U3: 0-75mV	% of FSR	+100.00	±000.00	-100.00	0.01%
	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
	Engineering Units	+2.5000	±0.0000	-2.5000	100uV
U4: 0-2.5V	% of FSR	+100.00	±000.00	-100.00	0.01%
	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
	Engineering Units	+100.00	±000.00	-100.00	10uV
U7: 0-100mV	% of FSR	+100.00	±000.00	-100.00	0.01%
	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB
AQ upon Jaffing J	Engineering Units	+100.00	±000.00	-100.00	0.01%
Ao: user-defined	% of FSR	+100.00	±000.00	-100.00	0.01%
Uo: user-defined	Twos complement hexadecimal	7FFFFF	000000	800000	1LSB

 Table 4
 Input Range and Data Format

Example:

1. Input Range is A4:4-20mA, Input is 4mA:

		Command	#010(cr)
	Engineering Units	Response	>+04.000(cr)
	Percent of FSR	Response	>+020.00(cr)
	Twos complement	Response	>199999(cr)
2.	Input Range is U1:0-5V	, Input is 3V	
		Command	#010(cr)
	Engineering Units	Response	>+3.0000(cr)
	Percent of FSR	Response	>+060.00(cr)
	Twos complement	Response	>4CCCCC(cr)

Module Calibration:

We have calibrated the module, the user can use directly.

You can also use the product calibration function to re-calibrate the module. During calibration, the module need to been entered the appropriate signal, different input range needs different input signals.

In order to improve calibration accuracy, it is recommended to calibrate using the following equipment:

- 1. A stable output, low noise DC voltage / current signal source
- 2. A five and a half or more high-precision voltage / current measuring instruments to monitor the accuracy of the input signal

Calibration:

1. According to the module input range, connects to the corresponding input signal.

Which WJ28 module zero calibration is at input 0,full scale calibration is at the input full-scale 120%. For example, input signal is **4-20mA**, when calibrate zero, input **0mA**, when full-scale calibration, input **24mA**.

input signal is **0-5V**, when calibrate zero, input **0V**, when the full-scale calibration, input **6V**.

- 2. To WJ28 module input zero signal, usually is **0mA** or **0V**.
- 3. Until the signal stabilized, send the offset calibration \$ AA1N command to WJ28 module.(N means channel code)
- 4. To WJ28 module input 120% of full scale current or voltage signal.
- 5. Until the signal is stable, send the gain calibration \$ AA0N command to WJ28 module. (N means channel code)
- 6. Finished

Modbus RTU communication protocol:

Module default protocol is character communications protocol. If you need to set the module to Modbus RTU protocol, please follow these settings:

- 1. Short connect INIT pin (pin 8) and GND pin (pin 7).
- 2. Connect the power cord and the communication interface cable.
- 3. Turn on the power, the module enters the default state automatically, address 00, baud rate 9600.
- 4. Wait 1 minute, module is initialization.
- 5. Send the command **\$00P1(cr**), check the response, if is **!00 (cr)**, set successfully.
- 6. Turn off the power, INIT switch to the NORMAL position.
- 7. The module has been set to the Modbus RTU protocol mode successfully.

Register Description:

Address 4X (PLC)	Address (PC, DCS)	Data	Property	Data Explanation
40001	0000	Input Analog Signal	Read Only	Channel 0 data high 16 bit
40002	0001	Input Analog Signal	Read Only	Channel 1 data high 16 bit
40003	0002	Input Analog Signal	Read Only	Channel 2 data high 16 bit
40004	0003	Input Analog Signal	Read Only	Channel 3 data high 16 bit
40005	0004	Input Analog Signal	Read Only	Channel 4 data high 16 bit
40006	0005	Input Analog Signal	Read Only	Channel 5 data high 16 bit
40007	0006	Input Analog Signal	Read Only	Channel 6 data high 16 bit
40008	0007	Input Analog Signal	Read Only	Channel 7 data high 16 bit
40011	0010	Input Analog Signal	Read Only	Channel 0 data high 8 bit
40012	0011	Input Analog Signal	Read Only	Channel 1 data high 8 bit
40013	0012	Input Analog Signal	Read Only	Channel 2 data high 8 bit
40014	0013	Input Analog Signal	Read Only	Channel 3 data high 8 bit
40015	0014	Input Analog Signal	Read Only	Channel 4 data high 8 bit
40016	0015	Input Analog Signal	Read Only	Channel 5 data high 8 bit
40017	0016	Input Analog Signal	Read Only	Channel 6 data high 8 bit
40018	0017	Input Analog Signal	Read Only	Channel 7 data high 8 bit
40211	0210	Module Name	Read Only	High:0x00 Low:0x28
40221	0220	Channel Status	Read Only	High:0x00 Low: (0xFF)

Table 5 Modbus RTU register description

Standard DIN35 Rail

Warranty

Size(unit:mm)

Two years (but violate operating rules and requirements to create damage, clients need pay maintenance costs) **Copyright**

Copyright © 2010 Shenzhen WAYJUN Industrial Automation

Specifications subject to change without notice.

Brand

In this manual, mentioned other trademarks and copyright belongs to their respective owners.